Multivariate Receptor Models for Spatially Correlated Multipollutant Data
نویسندگان
چکیده
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
منابع مشابه
Part 3. Modeling of Multipollutant Profiles and Spatially Varying Health Effects with Applications to Indicators of Adverse Birth Outcomes.
The highly intercorrelated nature of air pollutants makes it difficult to examine their combined effects on health. As such, epidemiological studies have traditionally focused on single-pollutant models that use regression-based techniques to examine the marginal association between a pollutant and a health outcome. These relatively simple, additive models are useful for discerning the effect o...
متن کاملAssessment of uncertainty for coal quality-tonnage curves through minimum spatial cross-correlation simulation
Coal quality-tonnage curves are helpful tools in optimum mine planning and can be estimated using geostatistical simulation methods. In the presence of spatially cross-correlated variables, traditional co-simulation methods are impractical and time consuming. This paper investigates a factor simulation approach based on minimization of spatial cross-correlations with the objective of modeling s...
متن کاملBayesian Melding of Deterministic Models and Kriging for Analysis of Spatially Dependent Data
The link between geographic information systems and decision making approach own the invention and development of spatial data melding method. These methods combine different data sets, to achieve better results. In this paper, the Bayesian melding method for combining the measurements and outputs of deterministic models and kriging are considered. Then the ozone data in Tehran city are analyze...
متن کاملComparing Multipollutant Emissions-Based Mobile Source Indicators to Other Single Pollutant and Multipollutant Indicators in Different Urban Areas
A variety of single pollutant and multipollutant metrics can be used to represent exposure to traffic pollutant mixtures and evaluate their health effects. Integrated mobile source indicators (IMSIs) that combine air quality concentration and emissions data have recently been developed and evaluated using data from Atlanta, Georgia. IMSIs were found to track trends in traffic-related pollutants...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Technometrics
دوره 55 شماره
صفحات -
تاریخ انتشار 2013